Quadratic inference functions in marginal models for longitudinal data
نویسندگان
چکیده
منابع مشابه
Quadratic inference functions in marginal models for longitudinal data.
The quadratic inference function (QIF) is a new statistical methodology developed for the estimation and inference in longitudinal data analysis using marginal models. This method is an alternative to the popular generalized estimating equations approach, and it has several useful properties such as robustness, a goodness-of-fit test and model selection. This paper presents an introductory revi...
متن کاملQuadratic inference functions for varying-coefficient models with longitudinal data.
Nonparametric smoothing methods are used to model longitudinal data, but the challenge remains to incorporate correlation into nonparametric estimation procedures. In this article, we propose an efficient estimation procedure for varying-coefficient models for longitudinal data. The proposed procedure can easily take into account correlation within subjects and deal directly with both continuou...
متن کاملQuadratic inference functions for partially linear single-index models with longitudinal data
AMS 2000 subject classifications: 62G05 62G10 62G20 Keywords: Bias correction Generalized likelihood ratio Longitudinal data Partially linear single-index models QIF a b s t r a c t In this paper, we consider the partially linear single-index models with longitudinal data. We propose the bias-corrected quadratic inference function (QIF) method to estimate the parameters in the model by accounti...
متن کاملPenalized quadratic inference functions for single-index models with longitudinal data
In this paper, we focus on single-index models for longitudinal data. We propose a procedure to estimate the single-index component and the unknown link function based on the combination of the penalized splines and quadratic inference functions. It is shown that the proposed estimation method has good asymptotic properties. We also evaluate the finite sample performance of the proposed method ...
متن کاملModelling Heterogeneous Dispersion in Marginal Models for Longitudinal Proportional Data
Continuous proportional data is common in biomedical research, e.g., the pre-post therapy percent change in certain physiological and molecular variables such as glomerular filtration rate, certain gene expression level, or telomere length. As shown in (Song and Tan, 2000) such data requires methods beyond the common generalised linear models. However, the original marginal simplex model of (So...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Statistics in Medicine
سال: 2009
ISSN: 0277-6715,1097-0258
DOI: 10.1002/sim.3719